Shifting Operations and Graded Betti Numbers
نویسنده
چکیده
The behaviour of graded Betti numbers under exterior and symmetric algebraic shifting is studied. It is shown that the extremal Betti numbers are stable under these operations. Moreover, the possible sequences of super extremal Betti numbers for a graded ideal with given Hilbert function are characterized. Finally it is shown that over a field of characteristic 0, the graded Betti numbers of a squarefree monomial ideal are bounded by those of the corresponding squarefree lexsegment ideal.
منابع مشابه
The Behavior of Graded Betti Numbers via Algebraic Shifting and Combinatorial Shifting
Let ∆ be a simplicial complex and I∆ its Stanley–Reisner ideal. We write ∆ for the exterior algebraic shifted complex of ∆ and ∆ for a combinatorial shifted complex of ∆. It will be proved that for all i and j one has the inequalities βii+j(I∆e) ≤ βii+j(I∆c) on the graded Betti numbers of I∆e and I∆c . In addition, the bad behavior of graded Betti numbers of I∆c will be studied.
متن کاملOn a special class of Stanley-Reisner ideals
For an $n$-gon with vertices at points $1,2,cdots,n$, the Betti numbers of its suspension, the simplicial complex that involves two more vertices $n+1$ and $n+2$, is known. In this paper, with a constructive and simple proof, wegeneralize this result to find the minimal free resolution and Betti numbers of the $S$-module $S/I$ where $S=K[x_{1},cdots, x_{n}]$ and $I$ is the associated ideal to ...
متن کاملBetti numbers of strongly color-stable ideals and squarefree strongly color-stable ideals
In this paper, we will show that the color-squarefree operation does not change the graded Betti numbers of strongly color-stable ideals. In addition, we will give an example of a nonpure balanced complex which shows that colored algebraic shifting, which was introduced by Babson and Novik, does not always preserve the dimension of reduced homology groups of balanced simplicial complexes.
متن کاملCombinatorial Shifting and Graded Betti Numbers
Let ∆ be a simplicial complex and I∆ its Stanley–Reisner ideal. It has been conjectured that, for each i and j, the graded Betti number βii+j(I∆) of I∆ is smaller than or equal to that of I∆c , where ∆ c is a combinatorial shifted complex of ∆. In the present paper the conjecture will be proved affirmatively. In particular the inequalities βii+j(I∆) ≤ βii+j(I∆lex) hold for all i and j, where ∆ ...
متن کاملEmpty Simplices of Polytopes and Graded Betti Numbers
Abstract. The conjecture of Kalai, Kleinschmidt, and Lee on the number of empty simplices of a simplicial polytope is established by relating it to the first graded Betti numbers of the polytope. The proof allows us to derive explicit optimal bounds on the number of empty simplices of any given dimension. As a key result, we prove optimal bounds for the graded Betti numbers of any standard grad...
متن کامل